(本题12分)投掷一个质地均匀,每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.
已知向量,设函数. (1).求函数f(x)的最小正周期; (2).已知a,b,c分别为三角形ABC的内角对应的三边长,A为锐角,a=1,,且恰是函数f(x)在上的最大值,求A,b和三角形ABC的面积.
设数列是等差数列,且且成等比数列。 (1).求数列的通项公式 (2).设,求前n项和.
已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M. (1)求M; (2)当a,bM时,证明:2|a+b|<|4+ab|.
以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4. (1).求直线l的参数方程及圆C的极坐标方程; (2).试判断直线l与圆C有位置关系.
如图,四边形为边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的圆O交于F,连接CF并延长交AB于点E. (1).求证:E为AB的中点; (2).求线段FB的长.