(本题12分)投掷一个质地均匀,每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.
(本小题满分12分) 设,求直线AD与平面的夹角。
(本小题满分10分) 已知命题若是的充分不必要条件,求的取值范围
(本小题满分13分) 已知函数 (1)如果对任意恒成立,求实数a的取值范围; (2)设实数的两个极值点分别为判断①②③是否为定值?若是定值请求出;若不是定值,请把不是定值的表示为函数并求出的最小值; (3)对于(2)中的设,试比较(e为自然对数的底)的大小,并证明。
(本小题满分13分)已知双曲线,0为坐标原点,离心率 点在双曲线上。 (1)求双曲线的方程; (2)若直线l与双曲线交于P、Q两点,且, 求:|OP|2+|OQ|2的最小值。
(本小题满分13分)在数列 (1)求;(2)设的最小值。