如图,一张平行四边形的硬纸片中,,。沿它的对角线把△折起,使点到达平面外点的位置。(Ⅰ)△折起的过程中,判断平面与平面的位置关系,并给出证明;(Ⅱ)当△为等腰三角形,求此时二面角的大小。
在△ABC中,a,b,c分别为角A,B,C的对边.已知a=1,b=2,sinC=(其中C为锐角).(1)求边c的值.(2)求sin(C-A)的值.
已知函数f(x)=sinωx·sin(-φ)-sin(+ωx)sin(π+φ)是R上的偶函数.其中ω>0,0≤φ≤π,其图象关于点M(,0)对称,且在区间[0,]上是单调函数,求φ和ω的值.
设函数f(x)=msinx+cosx(x∈R)的图象经过点(,1).(1)求f(x)的解析式,并求函数的最小正周期.(2)若f(α+)=且α∈(0,),求f(2α-)的值.
设函数f(x)=2cos2x+2sinxcosx-1(x∈R).(1)化简函数f(x)的表达式,并求函数f(x)的最小正周期.(2)若x∈[0,],求函数f(x)的最大值与最小值.
已知函数f(x)=cos2(x-)-sin2x.(1)求f()的值.(2)若对于任意的x∈[0,],都有f(x)≤c,求实数c的取值范围.