如图,一张平行四边形的硬纸片中,,。沿它的对角线把△折起,使点到达平面外点的位置。(Ⅰ)△折起的过程中,判断平面与平面的位置关系,并给出证明;(Ⅱ)当△为等腰三角形,求此时二面角的大小。
已知函数 (1)求函数的最大值; (2)若的取值范围.
设椭圆的左、右焦点分别为,上顶点为A,在x轴负半轴上有一点B,满足三点的圆与直线相切. (1)求椭圆C的方程; (2)过右焦点作斜率为k的直线与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.
某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放最比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量万吨. (1)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列,求相邻两年主要污染物排放总量的关系式; (2)证明:数列是等比数列; (3)若该市始终不需要采取紧急限排措施,求m的取值范围.
如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是线段PB的中点. (1)求证:平面PAC; (2)求证:AQ//平面PCD.
某学校高一、高二、高三的三个年级学生人数如下表: 按年级分层抽样的方法评选优秀学生50人,其中高三有10人. (1)求z的值; (2)用分层抽样的方法在高一学生中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率.