如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;(2)GH2=GE·GF.
已知,,,求
(1)求证:; (2)求证: 不可能成等差数列。
附加题(按满分5分计入总分,若总分超过满分值以满分计算)如果集合满足,则称()为集合的一种分拆.并规定:当且仅当时,()与()为集合的同一种分拆.请计算集合所有不同的分拆种数有多少种?
已知函数满足:①定义在上;②当时,;③对于任意的,有.(1)取一个对数函数,验证它是否满足条件②,③; (2)对于满足条件①,②,③的一般函数,判断是否具有奇偶性和单调性,并加以证明.
已知函数()(1)若,作出函数的图象;(2)设在区间上的最小值为,求的表达式.