今年“五一”假期.某数学活动小组组织一次登山活动。他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山巅C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°,点C到水平线AM的距离为600米.(1)求B点到水平线AM的距离.(2)求斜坡AB的坡度.
已知点A(-2,n)在抛物线上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数的最小值是-4,请画出点P(,)的纵坐标随横坐标变化的图象,并说明理由.
如图,在平面直角坐标系中,点 A(2,n),B(m,n)(m>2), D(p,q)(q<n),点 B, D在直线 y=12x+1上.四边形 ABCD的对角线 AC, BD相交于点 E,且 AB//CD, CD=4, BE=DE, △AEB的面积是2.求证:四边形 ABCD是矩形.
已知实数a,b满足,,当时,函数()的最大值与最小值之差是1,求a的值.
如图,在△ABC中,AB=AC,点E,F分别是边AB,AC的中点,点D在边BC上.若DE=DF,AD=2,BC=6,求四边形AEDF的周长.
某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?