数学自选模块题号:03“数学史与不等式选讲”模块已知函数,且,对于定义域内的任意实数(1)设时,S取得最小值,求a,b的值;(2)在(1)的条件下,证明:对任意成立.
【改编】已知函数,R,是函数的一个零点. (1)求的值,并求函数的对称轴及单调递增区间; (2)若,且,,求的值.
(本小题满分14分)已知函数,, 其中,是自然对数的底数.函数,. (Ⅰ)求的最小值; (Ⅱ)将的全部零点按照从小到大的顺序排成数列,求证: (1),其中; (2).
(本小题满分13分)如图,设为抛物线的焦点,是抛物线上一定点,其 坐为,为线段的垂直平分线上一点,且点到抛物线的准线的距离为. (Ⅰ)求抛物线的方程; (Ⅱ)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值,求证:直线PA、PB的倾斜角互补.
(本小题满分12分)设数列的前项和为,点在直线上. (Ⅰ)求数列的通项公式; (Ⅱ)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前项和,并求使成立的正整数的最大值.
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点. (Ⅰ)求证:平面. (Ⅱ)求二面角的余弦值.