数学自选模块题号:03“数学史与不等式选讲”模块已知函数,且,对于定义域内的任意实数(1)设时,S取得最小值,求a,b的值;(2)在(1)的条件下,证明:对任意成立.
如图,已知四棱锥的底面是正方形,⊥底面,且,点、分别为侧棱、的中点 (1)求证:∥平面; (2)求证:⊥平面.
(本小题满分12分)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8. (Ⅰ)求椭圆M的标准方程; (Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.
(本小题满分12分)设双曲线的两个焦点分别为,离心率为2. (Ⅰ)求此双曲线的渐近线的方程; (Ⅱ)若、分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;
(本小题满分12分)抛物线的焦点为F,在抛物线上,且存在实数,使, (Ⅰ)求直线AB的方程; (Ⅱ)求△AOB的外接圆的方程。
(本小题满分13分)在平面直角坐标系中,已知椭圆:()的左焦点为,且点在上. (Ⅰ)求椭圆的方程; (Ⅱ)已知直线的斜率为2且经过椭圆的左焦点.求直线与该椭圆相交的弦长。