(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.(1)求证:平面PQB⊥平面PAD; (2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值
如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,, 是中点. (1)证明:平面平面;(2)求点到平面的距离.
对某电子元件进行寿命追踪调查,所得样本数据的频率分布直方图如下. (1)求,并根据图中的数据,用分层抽样的方法抽取个元件,元件寿命落在之间的应抽取几个? (2)从(1)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个元件寿命落在之间,一个元件寿命落在之间”的概率.
已知为锐角,且,函数,数列的首项,. (1)求函数的表达式;(2)求数列的前项和.
设函数. (1)若不等式的解集为,求的值; (2)若存在,使,求的取值范围.
已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为. (1)求圆的直角坐标方程; (2)若是直线与圆面≤的公共点,求的取值范围.