某个电脑用户计划使用不超过1 000元的资金购买单价分别为80元、90元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买4盒,写出满足上述所有不等关系的不等式.
已知,, 且(1) 求函数的解析式;(2) 当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.(1)从中同时摸出两个球,求两球颜色恰好相同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
已知,,当为何值时,(1) 与垂直?(2) 与平行?平行时它们是同向还是反向?
已知圆和圆.(1)判断圆和圆的位置关系;(2)过圆的圆心作圆的切线,求切线的方程;(3)过圆的圆心作动直线交圆于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.