(本题满分15分) 设抛物线C1:x 2=4 y的焦点为F,曲线C2与C1关于原点对称.(Ⅰ) 求曲线C2的方程;(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.
已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为 (Ⅰ)求椭圆的标准方程; (Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。
已知函数f(x)=cos(2x+)+-+sinx·cosx ⑴ 求函数f(x)的单调减区间;⑵ 若xÎ[0,],求f(x)的最值; ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=. ⑴ 若cosA=-,求cosC的值;⑵ 若AC=,BC=5,求△ABC的面积.
⑴ 求-的值; ⑵ 已知tana=3,求的值.
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.