.如图所示,∠BOC-∠AOB=10°,∠BOC:∠COD:∠DOA=2:3:4,求∠COD的度数.
一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米。如果梯子的顶端下滑了4米,那么梯子的底部在水平方向下滑了多少米?
如图,有一圆柱油罐,已知油罐的底面圆的周长是12米,高是5米,要从点A起环绕油罐建梯子,梯子的顶端正好到达点A的正上方点B,则梯子最短需多长?
(1) (2) (4)
在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r.则称P′为点P关于⊙C的反称点,下图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分別判断点M(2,1),,关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x袖上,求点P的横坐标的取值范围;(2)⊙C的圆心在x袖上,半径为1,直线与x轴、y轴分別交于点A,B.若线段AB存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.
(.重庆市B卷,第26题,12分)如图,抛物线与x轴交与A,B两点(点A在点B的左侧),与y轴交于点C. 点D和点C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.