(本小题满分16分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为()千元.设该容器的建造费用为千元.(1)写出关于的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的.
已知函数,.(I)求的最值;(II) 设,函数,;若对于任意,总存在,使得成立,求的取值范围
已知函数.(I)求的单调区间; (II) 若在处取得极值,直线与的图象有三个不同的交点,求的取值范围。
已知数列中,(为常数);是的前项和,且是与的等差中项。(I)求;(II)猜想的表达式,并用数学归纳法加以证明。
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
已知函数,且.(I)求函数的解析式;(II)求函数的单调区间和极值.