对于抛物线.(1)它与x轴交点的坐标为 ,与y轴交点的坐标为 ,顶点坐标为 ;(2)在坐标系中利用描点法画出此抛物线;(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是 .
如图,在中,AB=AC,以AB为直径的交BC于点M,于点N.(1)求证:MN是的切线;(2)若,AB=2,求图中阴影部分的面积.
某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍.若由一个工程队单独完成,C队比A队要多用10天.(1)求工程队A平均每天维修课桌的张数;(2)学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,提高后,A、B的工作效率仍然相同,且都为C队的2倍.这样他们至少还需要3天才能完成整个维修任务.求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.
某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”、“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得 元购物券,至多可得 元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.
如图所示,某海滨浴场东西走向的海岸线可近似看作直线. 救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号. 他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙. 乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C的北偏东方向,甲、乙的游泳速度均是2米/秒.问谁先到达B处?请说明理由.
如图,在正方形ABCD中,等边的顶点E、F分别在BC和CD上.(1)求证:CE=CF;(2)若等边的边长为2,求正方形ABCD的边长.