(11分)在一个不透明的纸箱里装有2个红球、1个白球,它们除颜色外完全相同.小明和小亮做摸球游戏,游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.
如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD, (1)求证:△BCE≌△DCF; (2)若AB=21,AD=9,AC=17,求CF的长.
已知直线及其两侧两点A、B,如图. (1)在直线上求一点P,使PA=PB; (2)在直线上求一点Q,使平分∠AQB. (以上两小题保留作图痕迹,标出必要的字母,不要求写作法.)
如图,在长度为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上. (1)在图中画出与△ABC关于直线l成轴对称的△AB′C′; (2)四边形ACBB′的面积为; (3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.
如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:△ABC≌△DEF.
(本题共6分)将一张正方形纸片剪成四个大小、形状一样的小正方形(如右下图所示),记为第一次操作,然后将其中的一片又按同样的方法剪成四小片,记为第二次操作,如此循环进行下去.请将下表中空缺的数据填写完整,并解答所提出的问题: (1)如果剪100次,共能得到__________个正方形. (2)如果剪次共能得到个正方形,试用含有、的等式表示它们之间的数量关系. ______________________________ (3)若原正方形的边长为1,设表示第次所剪的正方形的边长, ①试用含的式子表示=. ②试猜想与原正方形边长的数量关系,并用等式写出这个关系:__________________________________________.