(第(1)题4分、第(2)题5分,共9分)(1) 计算:+. (2)抛物线的部分图象如图所示,①求出函数解析式;②写出与图象相关的2个正确结论:(对称轴方程,图象与x正半轴、y轴交点坐标例外)
如图:把一张给定大小的矩形卡片ABCD放在宽度为10mm的横格纸中,恰好四个顶点都在横格线上,已知α=25°,求长方形卡片的周长。(精确到1mm,参考数据: sin25°≈0,cos25°≈0.9,tan25°≈0.5).
抛物线交轴于两点,交轴于点,已知抛物线的对称轴为直线,.(1)求二次函数的解析式;(2)在抛物线对称轴上是否存在一点,使点到两点距离之差最大?若存在,求出点坐标;若不存在,请说明理由;(3)平行于轴的一条直线交抛物线于两点,若以为直径的圆恰好与轴相切,求此圆的半径.
已知:如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)求B、C两点的坐标;(2)求直线CD的函数解析式;(3)设E、F分别是线段AB、AD上的两个动点,且EF平分四边形ABCD的周长.试探究:当点E运动到什么位置时,△AEF的面积最大?最大面积是多少?
已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2−bx+kc(c≠0)的图象与x轴一个交点的横坐标为1. (1)若方程①的根为正整数,求整数k的值; (2)求代数式的值; (3)求证:关于x的一元二次方程ax2−bx+c="0" ②必有两个不相等的实数根.
.已知如图,正方形AEDG的两个顶点A、D都在⊙O上,AB为⊙O直径,射线线ED与⊙O的另一个交点为C,试判断线段AC与线段BC的关系.