(本小题6分)如图,在中,(1)作的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆直径。
如图,是⊙O的直径,弦BC=5,∠BOC=60°,OE⊥AC,垂足为E.(1)求OE的长;(2)求劣弧AC的长.
已知二次函数的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
以直线为对称轴的抛物线过点(3,0),(0,3),求此抛物线的解析式.
已知抛物线。<1>求抛物线顶点M的坐标; <2>若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围; <3>在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质: 重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.已知:如图,点为等腰直角三角形的重心,,直线过点,过 三点分别作直线的垂线,垂足分别为点. <1>当直线与平行时(图1),请你猜想线段和三者之间的数量关系并证明;<2>当直线绕点旋转到与不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段三者之间又有怎样的数量关系?请写出你的结论,不需证明.