椭圆C1:的左、右焦点分别为F1、F2,F2也是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且(I)求C1的方程;(II)直线l∥OM(为坐标原点),且与C1交于A、B两点,若·=0,求直线l的方程
已知函数.(1)求函数的最小正周期和最小值;(2)若,,求的值.
已知二次函数,且不等式的解集为. (1)方程有两个相等的实根,求的解析式; (2)的最小值不大于,求实数的取值范围; (3)如何取值时,函数存在零点,并求出零点.
在平面直角坐标系中,点为动点,分别为椭圆的左右焦点.已知△为等腰三角形.(1)求椭圆的离心率;(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.
已知等差数列的公差,它的前项和为,若,且成等比数列.(1) 求数列的通项公式;(2)设数列的前项和为,求证:.
如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求点到面的距离;(2)求二面角的正弦值.