已知函数对任意实数都有,且 ,当时,.(1) 判断的奇偶性;(2) 判断在上的单调性,并给出证明;若,且,求的取值范围.
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长.与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点.(Ⅰ)求、的方程;(Ⅱ)求证:;(Ⅲ)记的面积分别为,若,求的取值范围.
已知函数(,)在一个周期上的一系列对应值如下表:
(Ⅰ)求的解析式;(Ⅱ)在△中,,为锐角,且,求△的面积.
已知=(,),=(,),(ω>0),且的最小正周期是.(Ⅰ)求的值;(Ⅱ)若=(),求值;(Ⅲ)若函数与的图象关于直线对称,且方程在区间上有解,求的取值范围.
扇形AOB中心角为60°,所在圆半径为,它按如下(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(Ⅰ)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设∠EOB=θ;(Ⅱ)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设∠EOM=;试研究(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
甲、乙二人参加知识竞赛活动,组委会给他们准备了难、中、易三种题型,其中容易题两道,分值各10分,中档题一道,分值20分,难题一道,分值40分,二人需从4道题中随机抽取一道题作答(所选题目可以相同)(Ⅰ)求甲、乙所选题目分值不同的概率;(Ⅱ)求甲所选题目分值大于乙所选题目分值的概率.