.(本小题满分14分)已知函数(,是不同时为零的常数),其导函数为. (1)当时,若不等式对任意恒成立,求的取值范围; (2)求证:函数在内至少存在一个零点; (3)若函数为奇函数,且在处的切线垂直于直线,关于的方程在上有且只有一个实数根,求实数的取值范围.
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(1)求异面直线GE与PC所成角的余弦值;(2)若F点是棱PC上一点,且,,求的值.
袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有3个,3号球有6个. (1)从袋中任意摸出2个球,求恰好是一个2号球和一个3号球的概率;(2)从袋中任意摸出2个球,记得到小球的编号数之和为,求随机变量的分布列和数学期望.
已知正项数列满足:, (1)求通项;(2)若数列满足,求数列的前和.
已知数列{}的前n项和 (n为正整数)。(1)令,求证数列{}是等差数列,并求数列{}的通项公式;(2)令,,求并证明:<3.
已知椭圆C:(a>b>0),过点(0,1),且离心率为.(1)求椭圆C的方程;(2)A,B为椭圆C的左右顶点,直线l:x=2与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.