意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长构造一组正方形(如下图):再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④.若按此规律继续作长方形,则序号为⑦的长方形周长是 .
如图,在梯形ABCD中,∠DCB=90°,AB∥CD,AB=25,BC=24.将该梯形折叠,点A恰好与点D重合,BE为折痕,那么AD的长度为_______________.
如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于________________.
如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是________________.
如图,在△ABC中,AD⊥BC于D,E、F分别是AB、AC的中点,当△ABC满足条件__________时,AEDF是菱形.
已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据个数分别为2、8、15、5,第四组的频数和频率分别是___________________.