有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀,先后摸两次,每次摸一张卡片,且摸出后不放回.(1)用树状图(或列表法)表示小敏摸出的两张卡片所有可能的结果.(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.
如图,在正方形网格上的一个△ABC.(1)作△ABC关于直线MN的对称图形(不写作法);(2)以P为一个顶点作与△ABC全等的三角形(规定点P与点B对应,另两顶点都在图中网格交点处),则可作出 个三角形.
解方程组:(本题6分)
把下列各式分解因式:(1) a4-1; (2) b3–4ab2 - 21a2b.
计算下列各式:(1)(a-b+c)(a-b-c)(2)先化简,再求值:(2a+b) 2-(3a-b) 2+5a(a-b),其中,.
如图,已知抛物线y=a(x-1)2+(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于轴的直线交射线OM于点C,B在轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.