已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;(Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
已知函数, (1)若函数在上是减函数,求实数的取值范围; (2)是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由; (3)当时,证明:.
设函数. (1)若曲线在点处与直线相切,求a,b的值; (2)求函数的单调区间.
如图,把边长为10的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设其高为h,体积为V(不计接缝). (1)求出体积V与高h的函数关系式并指出其定义域; (2)问当为多少时,体积V最大?最大值是多少?
设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。
的三个内角成等差数列,求证: