(本小题满分14分)已知函数 ,. (Ⅰ)当 时,求函数 的最小值; (Ⅱ)当 时,讨论函数 的单调性; (Ⅲ)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。
某种产品的广告费支出 与销售额(单位:百万元)之间有如下对应数据:
参考数据 (1)求线性回归方程; (2)试预测广告费支出为百万元时,销售额多大?
甲、乙两人在罚球线投球命中的概率分别为与,且各次投球相互之间没有影响. (1)甲、乙两人在罚球线各投球一次,求这二次投球中恰好命中一次的概率; (2)甲、乙两人在罚球线各投球二次,求这四次投球中至少有一次命中的概率.
已知:.求证:中至少有一个不小于.
已知函数. (Ⅰ)当时,求函数在处的切线方程; (Ⅱ)求函数的单调区间; (Ⅲ)若函数有两个极值点,不等式恒成立,求实数的取值范围.
已知椭圆的离心率为,且它的一个焦点的坐标为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设过焦点的直线与椭圆相交于两点,是椭圆上不同于的动点,试求的面积的最大值.