已知函数,,记.(1)若,且在上恒成立,求实数的取值范围;(2)若,且存在单调递减区间,求的取值范围;(3)若,设函数的图象与函数图象交于点、,过线段的中点作轴的垂线分别交,于点、,请判断在点处的切线与在点处的切线能否平行,并说明你的理由.
设函数()的图象过点. (Ⅰ)求的解析式;(Ⅱ)已知,,求的值.
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值. (Ⅰ)求曲线C1的方程; (1-4班做)(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值. (5-7班做)(Ⅱ)设P(-4,1)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:四点A,B,C,D的纵坐标之积为定值.
如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且; (Ⅰ)证明:无论取何值,总有; (Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值; (Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
已知圆C:,直线L: (1)求证:对m,直线L与圆C总有两个交点; (2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角; (3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.
如图,在直三棱柱中,、分别是、的中点,点在上,。 求证:(1)EF∥平面ABC; (2)平面平面.