已知函数,,记.(1)若,且在上恒成立,求实数的取值范围;(2)若,且存在单调递减区间,求的取值范围;(3)若,设函数的图象与函数图象交于点、,过线段的中点作轴的垂线分别交,于点、,请判断在点处的切线与在点处的切线能否平行,并说明你的理由.
如图,在直三棱柱中,,,分别为,的中点,四边形是边长为的正方形. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的余弦值.
已知等差数列满足:,,的前n项和为. (Ⅰ)求及; (Ⅱ)令bn=(),求数列的前n项和.
已知函数. (Ⅰ) 求函数的最小值和最小正周期; (Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求的标准方程; (Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从道备选题中一次性抽取道题独立作答,然后由乙回答剩余题,每人答对其中题就停止答题,即闯关成功.已知在道备选题中,甲能答对其中的道题,乙答对每道题的概率都是. (Ⅰ)求甲、乙至少有一人闯关成功的概率; (Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.