已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由; (3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
如图,在△ABC中,AD是边BC上的高, BC=14,AD=12,sinB=. 求tan∠DAC的值.
已知抛物线经过点(0 ,5)和 点(–1 ,0),且对称轴为,求函数解析式.
已知:在Rt△ABC中,∠C=90°,,,解这个直角三角形.
已知抛物线用配方法求出它的顶点坐标、对称轴.
.抛物线与轴交于A,B两点,与轴交于C点,且A(,0)。(1)求抛物线的解析式及顶点坐标D的坐标;(2)判断的形状,证明你的结论;(3)点M(m,0)是轴上的一个动点,当MC+MD的值最小时,求m的值。