(本小题满分12分)某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为和)进行技术分析.求事件“”的概率.
在中,角所对的边分别为,点在直线上.(1)求角的值;(2)若,且,求.
如图,四棱锥中,底面为平行四边形,,,底面(1)证明:;(2)若,求二面角余弦值.
已知函数.(1)若,讨论函数在区间上的单调性;(2)若且,对任意的,试比较与的大小.
已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.(1)求椭圆的方程;(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
如图已知中,,点是边上的动点,动点满足(点按逆时针方向排列).(1)若,求的长;(2)若,求△面积的最大值.