(本小题满分14分)如图,在直三棱柱中,,,是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求二面角的余弦值;(Ⅲ)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
在ABC的边AB,BC,CA上分别取D,E,F.使得DE=BE,FE=CE,又点O是△ADF的外心。 (Ⅰ)证明:D,E,F,O四点共圆; (Ⅱ)证明:O在∠DEF的平分线上.
已知函数 (1)求的解析式及减区间; (2)若的最小值。
已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足 (Ⅰ)求椭圆C的方程; (Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。
如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。 (I)求证:A1B∥平面AMC1; (II)求直线CC1与平面AMC1所成角的正弦值; (Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题. (Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图; (Ⅱ)根据频率分布直方图,估计本次考试的平均分; (Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。