(本小题满分15分)已知椭圆C:+=1(a>b>0)的离心率为,且经过点P(1,).(1)求椭圆C的方程;(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M.问点M满足什么条件时,圆M与y轴有两个交点? 并求两点间距离的最大值.
(本小题满分12分) 已知的内角所对的边分别是,设向量,,. (Ⅰ)若//,求证:为等腰三角形; (Ⅱ)若⊥,边长,,求的面积.
(本小题满分13分) 已知,,,…,. (Ⅰ)请写出的表达式(不需证明); (Ⅱ)求的极小值; (Ⅲ)设,的最大值为,的最小值为,试求的最小值.
(本小题满分12分) 已知命题:实数满足;命题:实数满足,若是的必要不充分条件,求实数的取值范围.
(本小题满分12分) 已知向量,,设函数,. (Ⅰ)求函数的最小正周期和单调递减区间; (Ⅱ)若方程在区间上有实数根,求的取值范围.
(本小题满分14分)如图,在三棱锥中,面面,是正三角形, ,. (Ⅰ)求证:; (Ⅱ)求平面DAB与平面ABC的夹角的余弦值; (Ⅲ)求异面直线与所成角的余弦值.