(本小题满分12分)如图,在三棱锥中, 、、两两垂直,且.设是底面内一点,定义,其中、、分别是三棱锥、 三棱锥、三棱锥的体积.已知.(Ⅰ)求的值;(Ⅱ)若恒成立,求实数的取值范围.
某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板长为2m,跳水板距水面的高为3m,=5m,=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点m()时达到距水面最大高度4m,规定:以为横轴,为纵轴建立直角坐标系. (1)当=1时,求跳水曲线所在的抛物线方程; (2)若跳水运动员在区域内入水时才能达到压水花的训练要求,求达到压水花的训练要求时的取值范围.
是定义在上的减函数,满足. (1)求证:; (2)若,解不等式.
已知等差数列的前三项依次为、4、,前项和为,且. (1)求及的值; (2)设数列的通项,证明数列是等差数列,并求其前项和.
已知二次函数. (1)若对任意、,且,都有,求证:关于的方程有两个不相等的实数根且必有一个根属于; (2)若关于的方程在上的根为,且,设函数的图象的对称轴方程为,求证:.
设函数. (1)若,对一切恒成立,求的最大值; (2)设,且、是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.