本题共有3个小题,第1小题满分5分,第2小题满分6分, 第3小题满分7分.对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U型”函数。(1)求证:函数是上的“U型”函数;(2)设是(1)中的“U型”函数,若不等式对一切的恒成立,求实数的取值范围;(3)若函数是区间上的“U型”函数,求实数和的值.
如图2-3-1,一个堆放铅笔的V型架的最下面一层放1枝铅笔,往上每一层都比它下面一层多放1枝.最上面一层放120枝,这个V型架上共放着多少枝铅笔?图2-3-1
已知数列{an}的前n项和为Sn=-n2+n,试求出数列{|an|}的前n项和Tn.
首项为3公差为2的等差数列,Sk为其前k项和,则S=+++…+的值为多少?
已知等差数列{an}的公差为1,且a1+a2+a3+…+a99=99,则a3+a6+a9+…+a99的值是多少?
等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?