(本小题满分12分)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I)求红队至少两名队员获胜的概率;(II)用表示红队队员获胜的总盘数,求的分布列和数学期望.
已知是等差数列,其中 (1)求的通项公式 (2)数列从哪一项开始小于0; (3)求值。
已知命题p:关于x的方程有两个不相等的负根. 命题q:关于x的方程无实根,若为真,为假,求的取值范围.
a,b,c为△ABC的三边,其面积=12,bc=48,b-c=2,求a.
双曲线的中心在原点,右焦点为,渐近线方程为. (Ⅰ)求双曲线的方程;(Ⅱ)设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点;
已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点. (Ⅰ)求证:OA⊥OB;(Ⅱ)当△OAB的面积等于时,求k的值.