(本小题满分12分)已知椭圆的长轴长为,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆右焦点的直线交椭圆于两点,若以为直径的圆过原点,求直线方程.
已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d,写出其算法并画出流程图.
已知(1-2x)7=a0+a1x+a2x2+…+a7x7. 求:(1)a1+a2+…+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|.
)设(2-x)100=a0+a1x+a2x2+…+a100x100,求下列各式的值: (1)a0; (2)a1+a2+…+a100; (3)a1+a3+a5+…+a99; (4)(a0+a2+…+a100)2-(a1+a3+…+a99)2.
已知(a2+1)n展开式中的各项系数之和等于(x2+)5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值(a∈R).
4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球. (1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法? (2)取出一个红球记2分,取出一个白球记1分,若取出4个球总分不少于5分,则有多少种不同的取法?