.如图1,平面四边形ABCD关于直线AC对称,,把△ABD沿BD折起(如图2),使二面角A―BD―C的余弦值等于。对于图2,完成以下各小题: (1)求A,C两点间的距离;(2)证明:AC平面BCD;(3)求直线AC与平面ABD所成角的正弦值。
已知是过点的两条互相垂直的直线,且与双曲线各两个交点,分别为和. (1)求的斜率的取值范围;(2)若,求的方程.
已知抛物线的焦点为,以为圆心,长为半径,在轴上方的半圆交抛物线于不同的两点,,是的中点. ⑴求的值; ⑵是否存在这样的值,使,,成等差数列?
已知直线过坐标原点,抛物线的顶点在原点,焦点在轴正半轴上,若点和点关于的对称点都在上,求直线和抛物线的方程.
如图,是抛物线上上的一点,动弦分别交轴于两点,且. (1)若为定点,证明:直线的斜率为定值; (2)若为动点,且,求的重心的轨迹方程.
设过点,倾斜角为的直线与抛物线相交于两点,抛物线的顶点在原点,以轴为对称轴,若成等比数列,求抛物线的方程.