(本小题9分)如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为等边三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D(1)判断点C是否为弧OB的中点?并说明理由;(2)求B、C两点的坐标; (3)求直线CD的函数解析式; (4)点P在线段OB上,且满足四边形OPCD是等腰梯形,求点P坐标.
解下列二元一次方程组:(1)(2)
如图,长为50cm,宽为cm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为cm.(1)从图可知,每个小长方形较长一边长是 cm(用含的代数式表示);(2)求图中两块阴影A、B的周长和(可以用的代数式表示);(3)分别用含,的代数式表示阴影A、B的面积,并求为何值时两块阴影部分的面积相等.
如图,已知四边形ABCD,AD∥BC.点P在直线CD上运动(点P和点C,D不重合,点P,A,B不在同一条直线上),若记∠DAP,∠APB,∠PBC分别为.(1)当点P在线段CD上运动时,写出之间的关系并说出理由;(2)如果点P在线段CD(或DC)的延长线上运动,探究之间的关系,并选择其中的一种情况说明理由.
某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?
(1)先化简,再求值:,其中,.(2)已知,,求出和的值.