(14分)已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.(1) 求抛物线的解析式;(2) 以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;(3) 设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.
如图,有一直径是1米的圆形铁皮,要从中剪出一个圆心角是120°的扇形ABC,求: (1)被剪掉阴影部分的面积。 (2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?
如图,在□ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H。 (1)求证:△BAE∽△BCF (2)若BG=BH,求证四边形ABCD是菱形
如图:把一张给定大小的长方形卡片ABCD放在宽度为10mm的横格纸中,恰好四个顶点都在横格线上,已知α=32°,求长方形卡片的周长。 (参考数据 sin32°≈0.5 cos32°≈0.8 tan32°≈0.6)
如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm, 我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离。
玉树大地震发生后,小超把本年级同学的捐款情况统计并制成图表,如下
请根据图表提供的信息解答下列问题: (1)表中m和n所表示的数分别是多少? (2)补全频数分布直方图。 (3)捐款金额的中位数落在哪个段?