已知:在平面直角坐标系中矩形OABC如图,且A (6,0)、C(0,10),P点从C出发沿折线COA匀速运动、Q点从O出发沿折线OAB匀速运动,P、Q两点同时出发运动秒,且速度均为每秒2个单位长度,设.已知直线平分矩形OABC面积,求的值;(经验之谈:过对称中心的任意一条直线均可将中心对称图形分成面积相等的两部分.)当P点在CO上、Q点在OA上时,为何值有S=12.?求在此运动过程中S与的函数关系式.
(本题满分8分)解不等式组并把解集在数轴上表示出来.
(本题满分8分) (1)化简:÷-(2)、计算
.如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A,B(A在B的右边)。 (1)求抛物线的解析式 (2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F。问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由。 (3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由。
如图,在中,点是边上的动点(点与点不重合),过动点作交于点 (1)若与相似,则是多少度? (2)试问:当等于多少时,的面积最大?最大面积是多少? (3)若以线段为直径的圆和以线段为直径的圆相外切, 求线段的长.
某冰箱厂为响应国家“家电下乡”号召,计划生产、两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
(1)冰箱厂有哪几种生产方案? (2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元? (3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.