如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点. (Ⅰ)求证:四点A,I,H,E共圆;(Ⅱ)若∠C=,求∠IEH的度数.
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明:直线AC经过原点O.
椭圆的离心率是,它被直线截得的弦长是,求椭圆的方程.
已知p:,q:.(1)若p是q充分不必要条件,求实数的取值范围;(2)若“非p”是“非q”的充分不必要条件,求实数的取值范围.
,其中、是常数,且满足,是否存在这样的、,使是与无关的定值.若存在,求出的值;若不存在,说明理由.
地面上有两座塔AB、CD,相距120米,一人分别在两塔底部测得一塔顶仰角为另一塔顶仰角的2倍,在两塔底连线的中点O测得两塔顶的仰角互为余角,求两座塔的高度。