已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,(1)求抛物线的方程;(2)若抛物线与直线无公共点,试在抛物线上求一点,使这点到直线的距离最短。
如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求+的值.
已知AD是△ABC的内角平分线,求证:=.
如图所示,已知平面α∥平面β,点P是平面α、β外一点,且直线PB分别与α、β相交于A、B,直线PD分别与α、β相交于C、D.(1)求证:AC∥BD;(2)如果PA=4 cm,AB=5 cm,PC=3 cm,求PD的长.
如图,以梯形ABCD的对角线AC及腰AD为邻边作平行四边形ACED,DC的延长线交BE于点F,求证:EF=BF.
如图,在▱ABCD中,设E和F分别是边BC和AD的中点,BF和DE分别交AC于P、Q两点.求证:AP=PQ=QC.