已知抛物线与x轴的一个交点为A(-1,0),与y轴正半轴交于点C.直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;当∠ACB=90°时,求抛物线的解析式;抛物线上是否存在点M,使得△ABM和△ABC的面积相等(△ABM与△ABC重合除外)?若存在,请直接写出点M坐标;若不存在,请说明理由.在第一象限内,抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出这个最大值和点N坐标;若不存在,请说明理由.
已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?
如图,B、C是线段AD上的两点,B是AC的中点,AC=AD.若BD=14cm,求AD的长.
回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.
(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图. (2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要 个小立方块,最多要 个小立方块.
解方程 (1)3x=10﹣3x (2)2(1﹣x)=x+1 (3)﹣1= (4)﹣2.5=.