本题共有2个小题,第1小题满分5分,第2小题满分7分.如图,在直三棱柱中,,,.(1)求三棱柱的表面积;(2)求异面直线与所成角的大小(结果用反三角函数表示).
已知函数,R的最大值是1,其图像经过点.(Ⅰ)求;(Ⅱ)求的单调递增区间;(Ⅲ)函数的图象经过怎样的平移可使其对应的函数成为奇函数
设向量a =, b =(其中实数不同时为零),当时,有a⊥b;当时,有a∥b.(Ⅰ)求函数解析式;(Ⅱ)设,且,求.
(Ⅰ)已知:,求的值.(Ⅱ)已知,为锐角,求的值.
在中,点E是AB的中点,点F在BD上,且BF=BD,求证:E、F、C三点共线.
(本小题满分14分) (1)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有:①AB=;②A点处对M、N两点的俯角分别为和;B点处对M、N两点的俯角分别为和;请同学们在示意图中标出这四个俯角并用文字和公式写出计算M,N间的距离的步骤. (2)在△ABC 中,若AB=2,AC=2BC,求△ABC面积的最大值.