如图,平面平面,是正三角形,,. (Ⅰ)求证:; (Ⅱ)求直线与平面所成角的正弦值.
已知a,b,m是正实数,且a<b,求证:<
射击比赛中,每位射手射击队10次,每次一发,击中目标得3分,未击中目标得0分,每射击一次,凡参赛者加2分,已知小李击中目标的概率为0.8.(1)设X为小李击中目标的次数,求X的概率分布; (2)求小李在比赛中的得分的数学期望与方差
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).(1)写出与的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
在数列中,,且前项的算术平均数等于第项的倍.(1)写出此数列的前项;(2)归纳猜想的通项公式,并用数学归纳法证明
已知函数(m为常数,且m>0)有极大值9.(1)求m的值;(2)若斜率为-5的直线是曲线的切线,求此直线方程