如图,直线与x轴、y轴分别相交于点B、点C,抛物线 经过B、C两点,与x轴的另一个交点为A,顶点为P,且抛物线的对称轴为.求抛物线的函数表达式及顶点坐标;连接AC,则在x轴上是否存在一点Q,使得以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出所有点Q的坐标;若不存在,请说明理由.
(河池)如图1,抛物线与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0). (1)写出D的坐标和直线l的解析式; (2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值; (3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
(河池)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折. (1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式; (2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?
(桂林)如图,已知抛物线与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动. (1)直接写出抛物线的解析式: ; (2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少? (3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.
(贵港)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为. (1)求抛物线的解析式并写出其顶点坐标; (2)若动点P在第二象限内的抛物线上,动点N在对称轴l上. ①当PA⊥NA,且PA=NA时,求此时点P的坐标; ②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
(贵港)如图,一次函数的图象与反比例函数的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA. (1)求一次函数和反比例函数的解析式; (2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.