如图,四棱锥中,底面是平行四边形,底面(Ⅰ)求证:;(Ⅱ)若,求二面角的余弦值;(Ⅲ)当时,在线段上是否存在一点使二面角为,若存在,试确定点的位置;若不存在,请说明理由。
(本小题12分)某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率; (2)不够7环的概率。
(本小题12分) 在平面直角坐标系中,点A(-1,-2)、B(2,3)、C(-2,-1)。(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()·=0,求t的值。
(本小题满分15分)已知是定义在上的奇函数,当时,(1)求的解析式;(2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。
(本小题满分15分)已知函数,.(1)讨论函数的单调区间;(2)设函数在区间内是减函数,求的取值范围.
(本小题满分14分)已知函数(1)若不等式的解集为或,求的表达式;(2)在(1)的条件下, 当时, 是单调函数, 求实数k的取值范围;(3)设, 且为偶函数, 判断+能否大于零?