如图,四棱锥中,底面是平行四边形,底面(Ⅰ)求证:;(Ⅱ)若,求二面角的余弦值;(Ⅲ)当时,在线段上是否存在一点使二面角为,若存在,试确定点的位置;若不存在,请说明理由。
如图,A,B,C,D四点在同一圆上,与的延长线交于点,点在的延长线上. (1)若,求的值; (2)若,证明:.
已知. (1)求函数的单调区间; (2)若关于的方程有实数解,求实数的取值范围; (3)当,时,求证:.
函数是定义在上的奇函数,且. (1)确定函数的解析式; (2)用定义法证明函数在上是增函数; (3)解不等式.
已知函数在区间上的最大值是2,求实数的值.
已知,设命题:函数为减函数.命题:当时,函数恒成立.如果“p或q”为真命题,“p且q”为假命题,求c的取值范围.