(本小题满分12分)直线l经过点,且和圆C:相交,截得弦长为,求l的方程.
椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点 . (1)求椭圆的方程及离心率; (2)若,求直线PQ的方程; (3)设(),过点P且平行于准线的直线与椭圆相交于另一点M,证明.
一条变动的直线L与椭圆+=1交于P、Q两点,M是L上的动点,满足关系|MP|·|MQ|=2.若直线L在变动过程中始终保持其斜率等于1.求动点M的轨迹方程,并说明曲线的形状.
椭圆>>与直线交于、两点,且,其中为坐标原点. (1)求的值; (2)若椭圆的离心率满足≤≤,求椭圆长轴的取值范围.
过椭圆引两条切线PA、PB、A、B为切点,如直线AB与x轴、y轴交于M、N两点. (1)若,求P点坐标; (2)求直线AB的方程(用表示); (3)求△MON面积的最小值.(O为原点)。
已知A、B为椭圆+=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=a,AB中点到椭圆左准线的距离为,求该椭圆方程.