(本题满分10分) 学习投影后,小刚、小雯利用灯光下自己的影子长度来测量一路灯的高度。如图,在同一时间,身高为1.6m的小刚(AB)的影子BC长是3m,而小雯(EH)刚好在路灯灯泡的正下方点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH;(3)如果小刚沿线段BH向小雯(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长。
如图,在平面直角坐标系中,直线l:y=x+4分别交x轴、y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到△A′OB′. (1)求直线A′B′的解析式; (2)若直线A′B′与直线l相交于点C,求△A′BC的面积.
如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的. (1)请写出旋转中心的坐标是 ,旋转角是 度; (2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形; (3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
在直角坐标系中,四边形ABCD顶点的位置如图所示. (1)求边AB,BC,CD,AD的长; (2)求四边形ABCD的面积.
小王每天从某报社以每份0.6元买进报纸300份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.3元退给小王,如果小王平均每天卖出报纸x份,纯收入为y元. (1)求y与x之间的函数关系式(要求写出自变量x的取值范围); (2)如果每月以30天计算,小王每天至少要卖多少份报纸(假设小王每天所卖报纸份数相同)才能保证每月收入不低于2600元?
(1)计算:; (2)解不等式组,并指出它的所有的非负整数解.