.(本题12分)已知.⑴化简并求函数的最小正周期⑵求函数的最大值,并求使取得最大值的的集合
已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求: (Ⅰ)D1E与平面BC1D所成角的大小; (Ⅱ)二面角D-BC1-C的大小; (Ⅲ)异面直线B1D1与BC1之间的距离.
已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点. (1)求证:E、F、D、B共面; (2)求点A1到平面的BDEF的距离; (3)求直线A1D与平面BDEF所成的角.
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角. (1)若AE⊥PD,E为垂足,求证:BE⊥PD; (2)求异面直线AE与CD所成角的余弦值.
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC.
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小