已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足。数列满足,为数列的前n项和。(I)求;d和;(II)若对任意的,不等式恒成立,求实数的取值范围。
已知函数. (1)若,求的值; (2)设△三内角所对边分别为且,求在上的值域.
设对于任意实数x,不等式恒成立. (1)求m的取值范围; (2)当m取最大值时,解关于x的不等式:
已知极点与坐标原点O重合,极轴与x轴非负半轴重合,M是曲线C: =4sin上任一点,点P满足.设点P的轨迹为曲线Q. (1)求曲线Q的方程; (2)设曲线Q与直线(t为参数)相交于A、B两点,且|AB|=4.求实数a.
如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P. (1)求证:AD//EC; (2)若AD是⊙O2的切线,且PA=6,PC =2,BD =9,求AD的长。
己知函数 (1)求函数的单调区间; (2)设函数,是否存在实数a、b、c∈[0,1],使得若存在,求出t的取值范围;若不存在,说明理由.