(本小题满分12分)已知函数,.(1)设(其中是的导函数),求的最大值;(2)证明: 当时,求证:;(3)设,当时,不等式恒成立,求的最大值.
(本小题满分12分)已知f(x)= ,求f[f(0)]的值
(本小题满分12分)集合A={(x,y)},集合B={(x,y),且0},又A,求实数m的取值范围
(本小题满分12分)已知,全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求CUA,CUB,(CUA)∩(CUB),(CUA)∪(CUB),CU(A∩B),CU(A∪B),并指出其中相关的集合
(本小题满分14分)已知是定义在上的函数, 其三点, 若点的坐标为,且 在和上有相同的单调性, 在和上有相反的单调性.(1)求 的取值范围;(2)在函数的图象上是否存在一点, 使得 在点的切线斜率为?求出点的坐标;若不存在,说明理由;(3)求的取值范围。
.本小题满分15分)如图,已知椭圆E:,焦点为、,双曲线G:的顶点是该椭圆的焦点,设是双曲线G上异于顶点的任一点,直线、与椭圆的交点分别为A、B和C、D,已知三角形的周长等于,椭圆四个顶点组成的菱形的面积为.(1)求椭圆E与双曲线G的方程;(2)设直线、的斜率分别为和,探求和的关系;(3)是否存在常数,使得恒成立?若存在,试求出的值;若不存在, 请说明理由.