(本题满分12分)已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立(1)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;(2)设,求数列的前n项和Bn;
设函数 (1)若时,解不等式; (2)若不等式的对一切恒成立,求实数的取值范围
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为. (1)求圆C的极坐标方程; (2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|.
已知函数f(x)=2ax--(2+a)lnx(a≥0). (1)当a=0时,求f(x)的极值; (2)当a>0时,讨论f(x)的单调性; (3)若对任意的a∈(2,3),x1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围。
已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上, (1)求椭圆E的方程; (2)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
2013年9月20日是第25个全国爱牙日。某区卫生部门成立了调查小组,调查 “常吃零食与患龋齿的关系”,对该区六年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名. (1)能否在犯错概率不超过0.001的前提下,认为该区学生的常吃零食与患龋齿有关系? (2)4名区卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
附: