如图,在半径是2的⊙O中,点Q为优弧的中点,圆心角∠MON=60°,在上有一动点P,且点P到弦MN所在直线的距离。(1)求弦MN的长;(2)试求阴影部分面积与的函数关系式,并写出自变量的取值范围;(3)试分析比较,当自变量为何值时,阴影部分面积与的大小关系。
如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF. (1)若⊙O的半径为3,∠DAB=120°,求劣弧的长; (2)求证:BF=BD; (3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G. (1)求证:△BGD∽△DMA; (2)求证:直线MN是⊙O的切线.
已知关于x的方程的两根是一个矩形两邻边的长. (1)k取何值时,方程在两个实数根; (2)当矩形的对角线长为时,求k的值.
如图,要利用一面墙(墙长为25米)建羊圈,用75米的围栏围成总面积为300平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
如图所示,是圆O的一条弦,,垂足为,交圆O于点,点在圆O上. (1)若,求的度数; (2)若AC=,CD=1,求圆O的半径.