(本小题满分14分)设函数,;(Ⅰ)求的单调递增区间;(Ⅱ)若,求使≤对x∈[1,e]恒成立的实的值。(注:e为自然对数的底数)
对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1) 判断函数是否为 “()型函数”,并说明理由;(2) 若函数是“()型函数”,求出满足条件的一组实数对;(3)已知函数是“型函数”,对应的实数对为,当时,,若当时,都有,试求的取值范围.
已知函数.(1)若在处取得极值,求的单调递增区间;(2)若在区间内有极大值和极小值,求实数的取值范围.
函数的定义域为,.(1)求集合;(2)若,求实数的取值范围.
命题:关于的不等式对一切恒成立,命题:函数是增函数,若中有且只有一个为真命题,求实数的取值范围.
某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率;(2)其中恰有3次击中目标的概率.