(本小题满分8分)如图所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为a cm,宽为b cm,厚为c cm,如果按如图所示的包书方式,将封面和封底 各折进去3cm,用含a,b,c的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm,宽为16cm,厚为6cm的字典,你能用一张长为43cm,宽为26cm的矩形纸包好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.
如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F. (1)对角线AC的长是 ,菱形ABCD的面积是 ; (2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由; (3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由,若变化,请探究OE、OF之间的数量关系,并说明理由.
(本题8分)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x件. (1)写出y与x之间的函数关系式; (2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.
(本题8分)从甲、乙两种玉米苗中各抽取10株,分别测得它们的高度(单位:cm)如下: 甲:25,41,40,37,22,14,19,39,21,42; 乙:27,16,44,27,44,16,40,40,16,40. 问:(1)哪种玉米苗长得高? (2)哪种玉米苗长得整齐?
(本题7分)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE. (1)求证:BE=CE. (2)求∠BEC的度数
(本题5分)如图,BC长为3cm,AB长为4cm,AF长为12cm,求正方形CDEF的面积。